Selective and Direct Formation of Ethene from CO and H_2 over $In_2O_3-Y_2O_3$, $-La_2O_3$, and $-CeO_2$ Catalysts

Toru Arai, Ken-ichi Maruya,* Kazunari Domen, and Takaharu Onishi*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan

Ethene is selectively formed from CO and H_2 over In_2O_3 -containing oxide catalysts such as $In_2O_3-Y_2O_3$, $-La_2O_3$, and $-CeO_2$ at 673 K and 67 kPa with the highest selectivity of 43% for hydrocarbons.

Many studies on the selective synthesis of low molecular weight hydrocarbons from CO and H_2 have been described. The selective syntheses of ethane,¹ propene,^{2,3} n-butenes,⁴ and isobutene⁵ have been reported. However, the direct and selective synthesis of ethene has not been successful. We report here the marked effect that addition of In₂O₃ to several oxides, such as Y₂O₃, La₂O₃, and CeO₂, has in enhancing the selective formation of ethene.

In₂O₃-containing oxide catalysts (In₂O₃-Y₂O₃, -La₂O₃, and -CeO₂) were prepared by co-precipitation from the aquous solution of each metal nitrate with NH₄OH and calcination of the hydroxides at 773 K for 3 h. The atomic ratios of In to M (M = Y, La, and Ce) were 1:10. The oxide catalysts (Y₂O₃, La₂O₃, and CeO₂) were prepared from the aqueous solution of each metal nitrate by the same procedure. The catalysts were evacuated before the reactions at 973 K. The reactions were carried out in a closed gas-circulating reaction system at 673 K and 67 kPa (H₂:CO = 3) initial pressure.

Table 1 shows the activities and selectivities for hydrocarbons formed from CO and H₂ over the oxides and In₂O₃containing oxide catalysts. The single oxide catalysts $(Y_2O_3,$ La_2O_3 , and CeO_2) produce mainly branched-chain C_4 and C_5 hydrocarbons.⁶ However, the addition of In₂O₃ to these oxides results in an increase in the selectivity for ethene and a decrease in C_4 , C_5 , and C_{6+} hydrocarbons. In₂O₃-CeO₂ exhibits the highest selectivity for ethene formation (43%) and the highest activity for hydrocarbon formation at 673 K. The In₂O₃-CeO₂ catalyst was stable for more than 48 h with a good carbon mass balance. When a mixture of H₂ and CO, ratio $H_2: CO = 50$, is introduced over In_2O_3 -CeO₂, the selectivity of ethene formation is still high, while the formation of methane increases. In contrast, the CO-H₂ reaction over In₂O₃ alone, which was reduced to metallic indium under the reaction conditions, proceeds to form a large amount of CO₂ instead of hydrocarbons.

From results of X-ray photoelectron spectroscopy (XPS)

Catalysts	B.E.T.ª surface area	Activity ^b		Selectivity in hydrocarbons (carbon-base %)								Alkenec
		Hydrocarbon	CO ₂	CH4	C_2H_4	C_2H_6	C_3H_6	C_3H_8	C4	C ₅	C ₆₊	selectivity
Y_2O_3	51	18 (0.35)	30	10	3	1	6	1	30	23	26	75
$In_2O_3 - Y_2O_3$	47	18 (0.38)	15	5	19	0.2	22	0.2	34	13	7	99
La ₂ O ₃	17	9 (0.53)	18	15	3	4	5	3	19	21	29	43
$In_2O_3-La_2O_3$	17	12 (0.71)	14	7	31	3	15	1	20	16	7	92
CeO ₂	21	43 (2.0)	34	25	28	1	8	1	21	8	8	96
In ₂ O ₃ -CeO ₂	28	160 (5.7)	130	24	43	0.5	9	0.5	13	7	2	99
In ₂ O ₃ -CeO ₂ ^d	28	21 (0.75)	4	48	42	0.5	7	0.3	2	0.2	+	99
In ₂ O ₃ e		trace	200			~~~~						

Table 1. Activity and selectivity for the $CO-H_2$ reaction over oxide and In_2O_3 -containing oxide catalysts.

^a Brunauer-Emmett-Teller, m²/g. ^b The values are the average from the initial 2.5 to 17.5 h in carbon-base (µmol g-cat⁻¹ h⁻¹ and parentheses show activity based on specific surface area in carbon-base (µmol) m⁻² h⁻¹. ^c C₂H₄/(C₂H₄ + C₂H₆) ×100. ^d 50 kPa and H₂/CO = 50. ^c In₂O₃ was reduced to metallic indium under the reaction conditions.

measurements of In_2O_3 - Y_2O_3 , $-La_2O_3$, and $-CeO_2$ after the reaction, the binding energies of In $3d_{5/2}$ corrected by reference to Au $4f_{7/2}$ (83.8 eV) were observed in the range 444.4---444.5 eV which are noticeably higher than the value of 443.3 eV for metallic indium.† These results indicate that In_2O_3 supported on the oxides is not reduced to the metallic state under the reaction conditions. It was also found that the surface atomic ratios of In to M (M = Y, La, and Ce) by XPS were close to values for the bulk composition. The X-ray diffraction (XRD) patterns of In_2O_3 -containing catalysts showed only the support oxides: Y_2O_3 (cubic), La_2O_3 (hexagonal), and CeO₂ (cubic). These results suggest that indium oxide is highly dispersed and this state probably has a

direct bearing on the highly selective formation of ethene. Similar results were obtained over Ga_2O_3 -containing oxide catalysts.

Received, 14th April 1987; Com. 504

References

- 1 T. Tatsumi, H. Odajima, and H. Tominaga, J. Chem. Soc., Chem. Commun., 1985, 207.
- 2 D. Fraenkel and B. C. Gates, J. Am. Chem. Soc., 1980, 102, 2478.
- 3 M. van der Reit, G. J. Hutchings, and R. G. Copperthwaite, J. Chem. Soc., Chem. Commun., 1986, 798.
- 4 L. F. Nazar, G. A. Ozin, F. Hugues, J. Godber, and D. Rancourt, Angew. Chem., 1983, 95, 645.
- 5 T. Maehashi, K. Maruya, K. Domen, and T. Onishi, Chem. Lett., 1984, 747.
- 6 K. Maruya, A. Inaba, T. Maehashi, K. Domen, and T. Onishi, J. Chem. Soc., Chem. Commun., 1985, 487.
- 7 K. Yoshihara, T. Shiokawa, K. Maeda, Y. Nakai, and K. Seto, Chem. Lett., 1973, 879.

[†] Commercial metallic indium (99.99%, Mitsuwa Co.) was spattered by Ar ion before the measurement, and the binding energy obtained for In $3d_{5/2}$ was in good agreement with previous results.⁷